Differential modulation of spinal and corticospinal excitability during drop jumps.
نویسندگان
چکیده
Previously it was shown that spinal excitability during hopping and drop jumping is high in the initial phase of ground contact when the muscle is stretched but decreases toward takeoff. To further understand motor control of stretch-shortening cycle, this study aimed to compare modulation of spinal and corticospinal excitability at distinct phases following ground contact in drop jump. Motor-evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS) and H-reflexes were elicited at the time of the short (SLR)-, medium (MLR)-, and long (LLR, LLR(2))-latency responses of the soleus muscle (SOL) after jumps from 31 cm height. MEPs and H-reflexes were expressed relative to the background electromyographic (EMG) activity. H-reflexes were highly facilitated at SLR (172%) and then progressively decreased (MLR = 133%; LLR = 123%; LLR(2) = 110%). TMS showed no effect at SLR, MLR, and LLR, whereas MEPs were significantly facilitated at the LLR(2) (122%; P = 0.003). Background EMG was highest at LLR and lowest at LLR(2). Strong H-reflex facilitation at the beginning of the stance phase indicated significant contribution of Iotaa-afferent input to the alpha-motoneurons during this phase that then progressively declined toward takeoff. Conversely, corticospinal excitability was exclusively increased at the phase of push off (LLR(2), approximately 120 ms). It is argued that corticomotoneurons increased their excitability at LLR(2). At LLR ( approximately 90 ms), Iotaa-afferent transmission as well as corticospinal excitability was low, whereas background EMG was high. Therefore it is speculated that other sources, presumably subcortical in origin, contributed to the EMG activity at LLR in drop jumps.
منابع مشابه
Influence of falling height on the excitability of the soleus H-reflex during drop-jumps.
AIM The stretch-shortening cycle (SSC) is characterized by stretching of the target muscle (eccentric phase) prior to a subsequent shortening in the concentric phase. Stretch reflexes in the eccentric phase were argued to influence the performance of short lasting SSCs. In drop-jumps, the short latency component of the stretch reflex (SLR) was shown to increase with falling height. However, in ...
متن کاملModulation of spinal excitability during observation of bipedal locomotion.
This study investigated whether a mirror mechanism exists for bipedal locomotion. We employed the soleus (plantar flexor) Hoffman reflex to investigate corticospinal excitability at the spinal level during observation of bipedal locomotion. The differential amplitude modulation of the left soleus Hoffman reflex during observation of bipedal heel-stepping (plantar dorsiflexion) (324+/-53 microV)...
متن کاملThe effects of expectancy on corticospinal excitability: passively preparing to observe a movement.
The corticospinal tract excitability is modulated when preparing movements. Earlier to movement execution, the excitability of the spinal cord increases waiting for supraspinal commands to release the movement. Movement execution and movement observation share processes within the motor system, although movement observation research has focused on processes later to movement onset. We used sing...
متن کاملCadence-dependent changes in corticospinal excitability of the biceps brachii during arm cycling.
This is the first study to report the influence of different cadences on the modulation of supraspinal and spinal excitability during arm cycling. Supraspinal and spinal excitability were assessed using transcranial magnetic stimulation of the motor cortex and transmastoid electrical stimulation of the corticospinal tract, respectively. Transcranial magnetic stimulation-induced motor evoked pot...
متن کاملChanges in corticospinal transmission following 8weeks of ankle joint immobilization.
OBJECTIVES Joint immobilization has previously been shown to modulate corticospinal excitability. The present study investigated changes in the excitability of distinct fractions of the corticospinal pathway by means of conditioning the H-reflex with transcranial magnetic stimulation (TMS) of the primary motor cortex (Hcond). This method allows assessment of transmission in fast (monosynaptic) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 99 3 شماره
صفحات -
تاریخ انتشار 2008